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Quantum transport response of topological 
hinge modes
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Nana Shumiya1, Jia-Xin Yin1, Tyler A. Cochran    1, Yongkai Li2,3,4, Yu-Xiao Jiang    1, 
Yuqi Zhang2,3, Guangming Cheng    7, Zi-Jia Cheng1, Xian P. Yang    1, Nan Yao    7, 
Titus Neupert8, Luis Balicas    6, Yugui Yao    2,3 , Bing Lv    5  & 
M. Zahid Hasan    1,9 

Electronic topological phases are typified by the conducting surface states 
that exist on the boundary of an insulating three-dimensional bulk.  
While the transport response of the two-dimensional surface states has been 
studied, the quantum response of the one-dimensional hinge modes has 
not been demonstrated. Here we provide evidence for quantum transport 
in gapless topological hinge states existing within the insulating bulk and 
surface energy gaps in the intrinsic topological insulator α-Bi4Br4. Our 
magnetoresistance measurements reveal pronounced Aharonov–Bohm 
oscillations that are periodic in h/e (where h denotes Planck’s constant 
and e is the electron charge). The observed periodicity evinces quantum 
interference of electrons circumnavigating around the hinges. We also 
demonstrate that the h/e oscillations evolve as a function of magnetic field 
orientation, following the interference paths along the hinge modes that 
are allowed by topology and symmetry. Our findings reveal the quantum 
transport response of topological hinge modes with both topological 
nature and quantum coherence, which can eventually be applied to the 
development of efficient topological electronic devices.

Surface states in topological insulators1–3 have attracted substantial 
attention thanks to their potential to facilitate backscattering-free 
transport response, which holds great promise for the development 
of ultra-low-dissipation quantum electronic devices. Despite the dis-
covery of numerous topological materials since the early 2000s, the 
achievement of quantum coherent transport on a large scale, which 
is critical for leveraging topological properties, remains a substantial 

technological challenge. While there have been reports of quantum 
coherence in engineered nanostructures4–10, their strong topological 
phases reside in a bulk energy gap that is locally present only over a 
limited momentum region in the Brillouin zone11. As transport captures 
the electronic properties over the entire Brillouin zone, the transport 
characteristics in devices made from these strong topological insula-
tors are dominated by electrons from bulk bands rather than electrons 
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Extended Data Figs. 2 and 3. To measure the four-terminal resistance 
of the sample, we employed a standard lock-in technique with a cur-
rent of 10 nA.

Before discussing our transport results, it is crucial to understand 
the current trajectories in the four-atomic-layer α-Bi4Br4. In α-Bi4Br4, the 
hinge-state profile depends on surface termination16,19. When uniformly 
cut along the (001), (00-1), (100) and (−100) surfaces, one hinge mode 
always resides at the top surface and another at the bottom16. However, 
in samples with an even number of layers, as in our four- and six-layer 
flakes, the inversion symmetry is broken, causing the pair of hinge 
states to reside on the same side surface: either the (100) or (−100)16,19 
plane. This leads to the pair of hinge states propagating along one side 
of the sample, as schematically depicted in Fig. 1c and supported by 
scanning tunnelling microscopy results (‘Scanning tunnelling micros-
copy evidence of hinge modes in four-atomic-layer-thick step edges’, 
Extended Data Figs. 4 and 5 and ref. 19). In the ideal three-dimensional 
α-Bi4Br4, which is infinitely long along the b direction, gapless topo-
logical surface modes are present and protected by the C2 rotation 
symmetry around the [010] axis on the (010) and (0-10) surfaces. In 
an infinitely long sample, this mode allows the hinge states to connect 
in a way that preserves the C2 symmetry since the hinge modes need 
to form a singly connected loop due to the spectral flow they carry. 
However, in finite-sized samples like our flakes, the (010) surface, being 
a crystal termination perpendicular to the atomic chains along the b 
axis, inevitably features the absence of the C2 symmetry. Consequently, 
the surface state at the (010) surface gaps out, but its ‘residue’ forms 
the gapless hinge states, connecting the original hinge states to form 
a singly connected loop within the (100) surface carrying the spec-
tral flow16 (Fig. 1c). For more comprehensive discussions, we refer to 
‘Higher-order band topology of α-Bi4Br4’, ‘Theoretical calculations of 
four-layer α-α-Bi4Br4’ and Extended Data Figs. 6 and 7.

Having discussed the formation of a hinge-mode loop in the (100) 
surface, we focus on our transport results. Figure 1d captures the high-
light of our experiments, illustrating the sample magnetoresistance 
when a magnetic field is applied perpendicularly to the ab plane at a 
very low temperature, T ≃ 30 mK. Examining the low-field resistance 
(Rxx) data, we detect a sharp cusp at zero field, followed by a concave- 
downward increase in Rxx (B) at low magnetic fields |B| < 1 T). This behav-
iour is characteristic of the weak antilocalization effect28,29, which arises 
due to the strong spin-orbit interaction in α-Bi4Br4. As we increase the 
magnetic field strength, we observe pronounced and reproducible 
resistance oscillations with a period of ΔB ≃ 1.97 T throughout the 
entire field range of ±18 T (Fig. 1d, left inset). These B-periodic oscil-
lations are a clear manifestation of the h/e Aharonov–Bohm effect23, 
where the period corresponds to an area of ≃2.1 × 10−15 m2. Remarkably, 
this result is in agreement with the flux area of the sample’s bc plane, 

(Φ
B
⟂ ab)

bc
= w × t cos(107∘) ≃ 2.3 × 10−15 m2 (Fig. 1g), where 107° is 

the angle between the crystallographic a and c directions according 
to its crystal structure16,18,19,25,26. Note that the slight mismatch between 

the extracted area from the Aharonov–Bohm effect and (ΦB ⟂ ab)
bc

 

can likely be attributed to the experimental error bars in determining 
both w (via optical microscopy) and t (via AFM), as well as the exact 
localization profile of the hinge state, which may not be precisely 
located at atomic positions right at the edge.

Further analysis of the Aharonov–Bohm effect provides crucial 
insights into our experiments. Our observations reveal that the ampli-
tude of the oscillations is of the order of ~1 kΩ ≃ 0.04 h e−2, which is 
comparable to those observed in quasi-one-dimensional nanostruc-
tures4,8,30,31. To obtain a more detailed view of the prominent B-periodic 
oscillation and its harmonics, we take the fast Fourier transform (FFT) 
of the derivative dR/dB, as shown in the right inset of Fig. 1d. This 
method is commonly used to isolate the oscillatory part from the slowly 
varying background31. The resulting FFT appears to be reasonably 

from the topological surface state11. Therefore, constructing extremely 
thin nanoribbons or very small nanostructures is necessary to achieve 
quantum coherence in strong topological insulators4–10, limiting their 
potential for applications. To overcome these limitations, a new class of 
materials called higher-order topological insulators12–15 offer a unique 
solution. In higher-order topological insulators, the topological elec-
tron channel propagates along the hinges of the sample, providing 
a strongly confined quantum channel due to the topology itself12–16. 
However, as with strong topological insulators, previous transport 
studies on higher-order topological insulators focused on systems in 
which non-topological conducting states are present as well17, limiting 
the potential for quantum coherent transport. Here we investigate 
a higher-order topological insulator, α-Bi4Br4 (refs. 16,18,19), which 
stands out for possessing a fully gapped energy spectrum in both the 
bulk and surface states throughout the entire Brillouin zone, providing 
a promising platform for a topological hinge transport channel that 
is free of non-topological conducting states. (Note that the α phase of 
Bi4Br4 is classified as a higher-order topological insulator16,18,19, while the 
β phase has been demonstrated to be a weak topological insulator20–22.) 
In α-Bi4Br4, we demonstrate the quantum coherent transport through 
the topological hinge modes.

A hallmark of quantum coherent transport is the manifestation of 
the Aharonov–Bohm interference23. The Aharonov–Bohm effect23, pre-
dicted almost 60 years ago, describes a phenomenon where a quantum 
wave is split into two waves that go around a closed path and interfere 
under the influence of an electromagnetic potential. The resulting 
interference pattern is determined by the magnetic flux enclosed by 
the waves. In the case of electrons, such a quantum interference occurs 
if the conduction electrons remain phase coherent after complet-
ing closed trajectories, resulting in a periodic oscillation in electrical 
resistance with a characteristic period of the magnetic field ΔB = Φ0/S, 
where Φ0 = h/e is the flux quantum, S is the area over which the electron 
trajectories remain phase coherent, h is Planck’s constant and e is 
the electron charge. It is worth noting that for bulk carriers, various 
sample-specific, impurity-dependent paths exist, whose interference 
results in a well-known phenomenon called universal conductance 
fluctuations24, which exhibit aperiodic field dependence and are com-
monly observed in small metallic and semiconducting structures. In 
contrast, for topological conduction channels, all phase coherent 
trajectories participating in the quantum interference enclose the 
same area perpendicular to the B field, which is different from universal 
conductance fluctuations. Here we present magnetoresistance traces 
from our α-Bi4Br4 samples that unambiguously show B-periodic oscil-
lations, the hallmark of the Aharonov–Bohm effect stemming from 
phase coherent carriers.

α-Bi4Br4 possesses a quasi-one-dimensional crystal structure, 
exhibiting interlayer stacking along the c axis with quasi-one- 
dimensional chains running along the b axis within each layer16,18,19,25,26; 
see ‘Crystal structure of α-Bi4Br4’ and Extended Data Fig. 1 for details 
on the crystal structure. To investigate the quantum coherent transport 
in α-Bi4Br4, we fabricated four-point probe devices using atomically 
thin flakes obtained through mechanical exfoliation from the crystal’s 
(001) surface, which offers the largest surface area and aligns with 
the preferred plane of α-Bi4Br4 (Extended Data Fig. 1c). These flakes 
typically exhibit a rectangular shape, with a markedly greater length 
along a specific direction, which aligns with the b axis as confirmed 
by our electron diffraction measurements on a relatively thicker flake 
(details in ‘Sample characterizations’ and Extended Data Fig. 2). In 
Fig. 1a, we present an optical microscopy image of a four-point probe 
device comprising four atomic layers. The length of the flake (displayed 
in Fig. 1a) along the b axis, denoted as w, is approximately 2 μm. The 
thickness (denoted as t) of the flake with the same optical contrast was 
determined using atomic force microscopy (AFM)27 and is depicted in 
Fig. 1b. For detailed information on sample fabrication and characteri-
zation, we refer to ‘Device fabrication’, ’Sample characterizations’ and 
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clean, indicating the absence of contributions from the bulk states and 
universal conductance fluctuations. If due to time-reversal symmetry, 
wave packets do not interfere after once encircling the hinge loop, but 
only after doing so twice; h/2e periodicity oscillations, known as the 
Altshuler–Aronov–Spivak oscillation32,33, should be observed. Our 
FFT result indeed reveals the presence of an h/2e peak, subdominant 
compared to the h/e Aharonov–Bohm peak, suggesting that the weak 
antilocalization effect observed at |B| < 1 T extends to sufficiently high 
field values. An overview of previous studies on the Aharonov–Bohm 
effect in mesoscopic transport experiments encompassing results 
from metallic rings, cylinders and nanostructures of three-dimensional 
first- and higher-order topological insulators, and a comparison of our 
observations with these previous results, is detailed in ‘An overview of 
the Aharonov–Bohm effect in mesoscopic electron transport’.

To confirm that the observed Aharonov–Bohm oscillations stem 
from the hinge-state carriers, we performed angular-dependent 

measurements. Figure 1e displays a series of magnetoresistance traces 
as the magnetic field direction is rotated from perpendicular to the 
ab plane to parallel to the b axis. The oscillation period ΔB increases 
as the magnetic field is oriented towards the b axis. To better visual-
ize this evolution, we plot the FFT frequency (equivalent to 1/ΔB) as a 
function of the angle (θ) between the magnetic field and the direction 
perpendicular to the ab plane (Fig. 1f). The main peak or frequency in 
the FFT exhibits a clear cosθ angular dependence, which aligns with the 
phase coherent hinge-mode propagation scenario depicted in Fig. 1c.

To bolster the case for the Aharonov–Bohm effect arising from 
phase coherent carriers circumnavigating along the hinges on the bc 
plane, we examined the magnetoresistance with the magnetic field 
oriented along different directions relative to the a axis of the crystal. 
As illustrated in Fig. 2a for the hinge-state propagation configuration 
expected for an even-layer α-Bi4Br4, the magnetic flux should be at its 
maximum when δ = 17o  and follow a cos(δ − 17o)  behaviour as the  
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Fig. 1 | Observation of Aharonov–Bohm oscillations of the topological hinge 
states. a, Optical microscopy image of Sample 1: a mechanically exfoliated 
α-Bi4Br4 flake comprising four atomic layers. White dashed lines indicate the flake 
boundaries. Current (I+ and I−) and voltage (V+ and V−) probes for four-terminal 
electrical transport measurements are also shown. The length of the flake (w) 
along the b axis is also marked. b, AFM image of a α-Bi4Br4 flake (right inset) 
having the same optical contrast as the flake in a, with its height (H) profile 
collected along the yellow dashed line (the arrow marks the directions of the 
scan), indicating a thickness t = H/ sin(107o) = 3.87 nm. The flake boundaries 
are marked with white dashed lines. Left inset, optical microscopy image.  
c, Propagation of the topological hinge states in a four-layer α-Bi4Br4 sample, 
where the breaking of the inversion symmetry leads to hinge-state propagation 
(highlighted in purple) along one side of the sample. d, Magnetoresistance of the 
α-Bi4Br4 device with the magnetic field applied perpendicularly to the ab plane. 
The magnetoresistance trace features a clear modulation. Left inset: magnetic 
field positions of the primary resistance minima (highlighted with arrows) that 

can be well fitted to a straight line of slope 1.97 ± 0.005 T, signalling a B-periodic 
oscillation. Right inset: FFT of the derivative dR/dB over the entire field range, 
showing a well-developed peak at 0.51 1/T, denoting a periodicity of 
(1/0.51) = 1.96 T. Locations of the peaks attributed to h/e and h/2e magnetic  
flux threaded into the area perpendicular to the magnetic field are labelled.  
e, Angular dependence of the Aharonov–Bohm oscillations as the direction of the 
magnetic field is varied from perpendicularly to the ab plane (θ = 0°) to along the 
b axis (θ = 90°). Plotted are a set of magnetoresistance traces collected at 
different angles (θ) between the magnetic field and the direction perpendicular 
to the ab plane. f, FFT frequency (in units of 1/T) as a function of θ. The angular 
dependence follows a cosθ behaviour. The inset illustrates the direction of 
rotation. g, Schematic depiction of the projected areas (shaded purple region) 
the magnetic flux is threaded into for magnetic fields perpendicular to the ab 
plane (left) and along the b axis (right), and which are enclosed by the topological 
hinge-state propagation (c) in a four-layer α-Bi4Br4 sample. The conduction path 
for the helical hinge states is highlighted by a purple line. a.u., arbitrary units.

http://www.nature.com/naturephysics


Nature Physics | Volume 20 | May 2024 | 776–782 779

Article https://doi.org/10.1038/s41567-024-02388-1

field direction rotates away from the a axis towards an orientation ⊥ab, 
with δ being the angle between the magnetic field and the a axis. In  
Fig. 2c–f, we present the angular-dependent data obtained from a 
second four-layer α-Bi4Br4 sample, Sample 2 (see Fig. 2b for its optical 
microscopy image). This sample has a length along the b axis of approxi-
mately w ≃ 2.1 μm and a thickness t = 3.87 nm, as determined from a 
flake with the same optical contrast. We observe clear Aharonov–Bohm 
oscillations for both B || a (Fig. 2c) and B ⊥ ab (Fig. 2d) orientations. For 
B || a, we find oscillations with a periodicity of ΔB ≃ 0.52 T, correspond-
ing to an area of 7.9 × 10−15 m2 (Fig. 2c), while for B ⊥ ab, the periodicity 
is ΔB ≃ 1.92 T, corresponding to an area of 2.2 × 10−15 m2 (Fig. 2d). These 
results are consistent with the respective flux areas or projections of 
the sample’s bc plane, (Φ

B
||a)

bc
= w.t sin(107o) ≃ 7.8 × 10−15 m2  and 

(Φ
B
⟂ ab)

bc
= w.t cos(107o) ≃ 2.4 × 10−15 m2

. Therefore, in this case, 
the Aharonov–Bohm effect for B || a exhibits a periodicity that is 
approximately 3.6× smaller, indicating a flux area that is approximately 
3.6× larger when compared to that for B ⊥ ab. This value aligns 

relatively well with 
( ΦB ||a)

bc
( ΦB ⟂ab)bc

= sin(107o)
cos(107o)

≃ 3.3 , as expected for the 

hinge-state propagation scenario shown in Fig. 2a. A more compelling 
indication of such hinge-mode propagation is revealed in Fig. 2e,f, 
where we explore the Aharonov–Bohm effect at different angles (δ) 
between the magnetic field and the a axis. Figure 2e displays a series 
of magnetoresistance traces acquired at different δ ranging from 
0o(B ||a) to 90o(B ⟂ ab) . The period of the oscillations in field DB 
decreases until δ ≈ 17o is reached before increasing again as the field 
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Fig. 2 | Angular dependence of the Aharonov–Bohm oscillations confirming 
hinge-state formation on the bc plane. a, Schematic illustration of the 
projected areas enclosed by propagating hinge states (Fig. 1c) in a four-layer 
α-Bi4Br4 sample (shaded purple regions), which the magnetic flux penetrates 
when the magnetic fields are applied along the a axis (top), rotated by 17° relative 
to the a axis (middle) and perpendicularly to the ab plane (bottom), leading to 
Aharonov–Bohm oscillations. The conduction path for the helical hinge states is 
highlighted by a purple line. b, Optical microscopy image of Sample 2: another 
mechanically exfoliated α-Bi4Br4 flake comprising four atomic layers. White 
dashed lines indicate the flake boundaries. Current and voltage probes for 
transport measurements are also shown. The length of the flake along the b axis, 
denoted as w, is also indicated. c, Resistance as a function of the magnetic field 
for Sample 2, with the magnetic field applied parallel to the a axis, revealing a 
pronounced, periodic modulation. Left inset, values of magnetic field for which 
the prominent resistance minima are observed that can be well fitted to a  
straight line yielding a slope of 0.52 ± 0.008 T, indicating B-periodic oscillations. 

Right inset, FFT of dR/dB over the entire field range, exhibiting a well-developed 
peak at 1.9 1/T corresponding to a periodicity of 1/1.9 = 0.53 T. Locations of the 
peaks corresponding to h/e and h/2e are labelled. d, Magnetoresistance 
measurements from the same sample but with the magnetic field perpendicular 
to the ab plane, revealing a distinct modulation pattern that is more sparsely 
spaced in B when compared to the data in c. Left inset, values of magnetic field for 
which prominent resistance minima are observed that can be fitted to a straight 
line with slope 1.92 ± 0.015 T, signalling a B-periodic oscillation. Right inset, FFT 
of dR/dB over the entire field range, revealing a well-developed peak at 0.52 1/T, 
suggesting a periodicity of 1/0.52 = 1.92 T. Peaks corresponding to h/e and h/2e 
are labelled. e, Angular dependence of the Aharonov–Bohm oscillations as a 
function of magnetic field orientation: that is, from along the a axis (δ = 0°) to 
perpendicular to the ab plane (δ = 90°). Plotted are a set of magnetoresistance 
traces collected at different angles (δ) between the magnetic field and the a axis. 
f, FFT frequency (in units of 1/T) plotted as a function of δ. The angular 
dependence can be fitted well to cos(δ− (16.4± 0.3)o).

http://www.nature.com/naturephysics


Nature Physics | Volume 20 | May 2024 | 776–782 780

Article https://doi.org/10.1038/s41567-024-02388-1

direction approaches ⊥ab. To provide a clearer visualization of this 
evolution, we plot the FFT frequency (equivalent to 1/ΔB) as a function 
of δ (Fig. 2f). Fitting the data in Fig. 2f to a cosine function yields a fitting 
function of 1.99cos(δ − (16.4 ± 0.3)o), indicating that 1/ΔB—that is, the 
flux area extracted from the Aharonov–Bohm effect—reaches a maxi-
mum around (16.4 ± 0.3)o.  This observation closely aligns with the 
depicted phase coherent hinge-mode propagation scenario in Fig. 2a. 
Collectively, the angular dependencies presented in Figs. 1f and 2f 
provide compelling evidence indicating that the Aharonov–Bohm 
effect indeed arises from phase coherent carriers circumnavigating 
along the hinges located on the bc plane of the sample.

After establishing the origin of the Aharonov–Bohm effect in 
α-Bi4Br4, we explore its temperature dependence. Figure 3a displays 
the temperature evolution of the magnetoresistance oscillations 
in Sample 2. The oscillatory features persist up to T ≃ 20 K, beyond 
which the resistance decreases considerably (as also observed in 
our temperature-dependent resistance measurements detailed in 
‘Temperature-dependent resistance measurements’ and Extended 
Data Fig. 8), presumably due to the thermal excitation of the bulk car-
riers towards the conduction band. To summarize the temperature- 
dependent data, we take the FFT of dR/dB and plot the FFT magnitude 
of the primary h/e peak against temperature in Fig. 3b. We find that the 
amplitude of the Aharonov–Bohm oscillations follows a clear power 
law as a function of the temperature: that is, Tα, with the exponent 
α being very close to the canonical value α = −1/2 observed in nearly 
all previous experiments probing the Aharonov–Bohm effect34–36, 
including mesoscopic metal rings34 and strong topological insulator 
nanoribbons4. Note that the amplitude of the Altshuler–Aronov–Spivak 
oscillation also follows a power law as a function of the temperature 
(Fig. 3c), with α reasonably close to −1/2. However, in certain experi-
ments, the amplitude of the Aharonov–Bohm oscillations is found to 
instead follow a nearly exponential decay as a function of T (ref. 10). 
This was interpreted as a temperature-dependent phase coherence 
length, implying a modified expression for the amplitude of the 

Aharonov–Bohm oscillations: ΔG = e2

h
( 2πhD
L2ϕkBT

)
1/2

exp (−πP/Lϕ)  

(ref. 35). Here D is the diffusion constant, e, h and kB are the electron 
charge, Planck and Boltzmann constants, Lϕ is the phase coherence 

length, and   P represents the perimeter of the geometrical path enclos-
ing the magnetic flux. In this expression, at least two functional forms 
were proposed for Lϕ: either Lϕ ∝ T − 1

2  (ref. 35) or Lϕ ∝ T−1 (ref. 10). In 
Extended Data Fig. 9, we provide examples of fits of our Aharonov–
Bohm and Altshuler–Aronov–Spivak oscillations to the above expres-
sion. We point out that this expression leads to a poorer description of 
our experimental data relative to the simple power law regardless of 
the precise functional form for Lϕ. This suggests that in our devices, Lϕ 
is probably T-independent. As the fitting indicates, regardless of its 
exact T-dependence, Lϕ is always much longer than the perimeter 
enclosed by the hinge modes in our four-layer α-Bi4Br4 device. Addition-
ally, based on our data in Figs. 1 and 2, showing a close correspondence 
between the area over which the electron trajectories remain phase 
coherent, as determined from the Aharonov–Bohm oscillations and 
the respective flux areas of the sample’s bc plane, we can infer the phase 
coherent diffusion length for our α-Bi4Br4 sample. It is at least as large 
as the perimeter of the sample’s bc plane: that is, 2 (w + t) ≃ 4.2 μm.

In Figs. 1–3, we have presented data for two devices with similar 
physical dimensions, yielding comparable periods for the Aharonov–
Bohm oscillations for specific magnetic field orientations. However, 
to firmly establish the correlation between the oscillation period and 
the area enclosed by the phase coherent carriers circumnavigating the 
hinges in the bc plane, it is beneficial to examine another device with 
different dimensions along the bc plane. Thus, in Fig. 4, we present 
magnetoresistance data obtained from a six-layer α-Bi4Br4 sample, 
denoted as Sample 3. Figure 4a portrays its optical microscopy image. 
This sample has a length along the b axis of approximately w ≃ 2.2 μm 
and a thickness of t = 5.75 nm, as determined from a flake with the same 
optical contrast (Fig. 4b). Notably, the hinge-state propagation con-
figuration in the six-layer flake, as schematically illustrated in Fig. 4c, 
mirrors that of the four-layer (and any even-layer) flake. Akin to Sample 
2 (Fig. 2), we observe Aharonov–Bohm oscillations having distinct 
periodicities for both B ⊥ ab (Fig. 4d) and B || a (Fig. 4e) orientations. 
For B ⊥ ab, we find oscillations with a periodicity ΔB ≃ 1.25 T, corre-
sponding to an area of 3.3 × 10−15 m2 (Fig. 4d), while for B || a, the perio-
dicity is ΔB ≃ 0.39 T, corresponding to an area of 10.6 × 10−15  m2  
(Fig. 4e). These results reasonably match the respective flux areas  
of the sample’s bc plane, (Φ

B
⟂ ab)

bc
= w.t cos(107o) ≃ 3.7 × 10−15 m2 
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Fig. 3 | Temperature dependence of Aharonov–Bohm oscillations.  
a, Magnetoresistance traces (for B ⊥ ab) at different temperatures ranging from 
0.35 to 45 K, acquired from Sample 2, showing the temperature evolution of the 
amplitude of the Aharonov–Bohm oscillations. b, Temperature dependence of 
the FFT amplitude of the primary h/e oscillations. Fitting the data to ATx yields 
the fitting parameters A = 0.44 and x = −0.46. The resulting fitting function 
is represented by the red curve. The fitting curve, which follows the form 

0.44 T−0.46±0.03, aligns well with the expected T−0.5 relation for Aharonov–Bohm 
oscillations. c, Temperature dependence of the FFT amplitude of the h/2e 
oscillations. Fitting the data to ATx yields the fitting parameters A = 0.16 and 
x =−0.58. The resulting fitting function is represented by the red curve. The 
fitting curve, which follows the form 0.16 T−0.58±0.03, in good agreement with the 
canonical T−0.5 relationship.
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and (
Φ
B
||a)

bc
= w.t sin(107o) ≃ 12 × 10−15 m2. Therefore, here also, the 

Aharonov–Bohm effect for B||a exhibits a periodicity that is approxi-
mately 3.2 times smaller, indicating a flux area approximately 3.2 times 
larger when compared to that for the B ⟂ ab case. This observation 

closely aligns with 
( ΦB ||a)

bc
( ΦB ⟂ab)

bc

= sin(107o)
cos(107o)

≃ 3.3, as anticipated according 

to the hinge-state propagation scenario displayed in Fig. 4c. Thus, the 
close correspondence between the period of the Aharonov–Bohm 
oscillations and the respective flux areas of the sample’s bc plane 
observed in samples with different physical dimensions robustly estab-
lishes the relationship between the period of the oscillations and the 

area enclosed by phase coherent carriers circumnavigating along the 
hinges on the bc plane.

Before closing, it is worth mentioning that our investigation has 
primarily focused on even-layer samples hosting hinge states that 
propagate along one side of the sample. The odd-layer samples, on the 
other hand, are theoretically envisioned to exhibit inversion-symmetric 
helical hinge modes with a different propagation configuration16. Their 
intriguing transport response awaits future investigations.

In conclusion, our experiments provide compelling evidence 
for the existence of quantum coherence in topological hinge modes, 
thus opening new avenues towards the development of integrated 
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scan), indicates a thickness t = H/ sin(107o) = 5.75 nm. The flake boundaries are 
marked with white dashed lines. Left inset: corresponding optical microscopy 
image. c, Schematic depiction of the area (shown as the shaded purple region) 
the magnetic flux is threaded into for magnetic fields applied perpendicularly to 
the ab plane (top) and along the a axis (bottom), which are enclosed by the 
topological hinge-state propagating (Fig. 1c) in a six-layer α-Bi4Br4 sample. The 
conduction path for the helical hinge states is highlighted with a purple line.  
d, Resistance Rxx as a function of the magnetic field in Sample 3, with the field 

applied perpendicularly to the ab plane. Rxx reveals pronounced periodic 
modulations. Left inset: positions of the prominent resistance minima as 
function of magnetic field. These can be well fitted to a straight line of slope 
1.25 ± 0.01 T, indicating B-periodic oscillations. Right inset, FFT of dR/dB over  
the entire field range, exhibiting a well-developed peak at 0.8 1/T, corresponding 
to a periodicity of 1/0.8 = 1.25 T. The locations of the peaks corresponding to  
h/e and h/2e are labelled. e, Magnetoresistance measurements on the same 
sample but with the magnetic field parallel to the a axis, unveiling a distinct 
modulation pattern that is more densely spaced in B when compared to the  
data presented in d. Left inset, magnetic field positions of the prominent 
resistance minima, which can be well fitted to a straight line having a slope 
0.39 ± 0.006 T, indicating B-periodic oscillations. Right inset, FFT of dR/dB over 
the entire field range, exhibiting a well-developed peak at 2.55 1/T corresponding 
to a periodicity of 1/2.55 = 0.39 T. The locations of the peaks corresponding  
to h/e and h/2e are labelled.
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topological circuitry. Unlike conventional electronic devices, topologi-
cal circuits are robust against defects and impurities, making them far 
less prone to energy dissipation, which is advantageous for practical 
applications. Our work goes beyond spectroscopic probes and show-
cases the potential of transport experiments to probe topological 
quantum matter, representing an important step towards realizing 
functional devices based on higher-order topology. Importantly, the 
nearly non-dissipative transport implied by our observation of the 
quantum interference effect hints at the potential of topological insu-
lators with large topological gaps to serve as superior materials for 
interconnects among semiconducting elements. Overall, our work 
demonstrates the rich physics and technological potential of topo-
logical insulators and could pave the way towards new applications in 
quantum information processing and spintronics.
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Methods
Single-crystal synthesis
The single crystals were synthesized using solid-state reactions. 
The Bi (Alfa Aesar, 99.9999%) pieces together with HgBr2 powders  
(Alfa Aesar, 99% +) were measured in a stoichiometric Bi:Br = 1:1 ratio, 
sealed in an evacuated quartz tube. The tube was then put into a hori-
zontal two-zone tube furnace, with raw materials placed at the hot 
end at 265 °C and the cold end set at 210 °C. Black needle-shaped crys-
tals start to form at the cold end and in the middle of the quartz tube 
after a few days. The whole assembly was then further annealed in a 
low-temperature oven at 160 °C over 1 month to ensure the high quality 
of the grown crystals after the full two weeks’ reaction. Large crystals up 
to 6 × 0.7 × 0.5 mm3 with needle direction along b axis and large lateral 
area along the (00l) surface could be grown using this method. All the 
materials handling and processing were performed inside a purified 
Ar-atmosphere glovebox with total O2 and H2O levels <0.1 ppm. The 
structure of the single crystals is confirmed by X-ray single-crystal dif-
fraction using both a Bruker Apex DUO single-crystal diffractometer 
and a Rigaku Smartlab X-ray diffractometer, and the composition is 
determined by scanning electron microscopy with energy-dispersive 
X-ray spectroscopy using a Zeiss EVO LS 15 scanning electron micro-
scope with accelerating voltage of 20 keV.

Crystal structure of α-Bi4Br4

α-Bi4Br4 possesses a quasi-one-dimensional crystal structure16,18,19,25,26. 
The side view of the crystal, as shown in Extended Data Fig. 1a, reveals 
an AB interlayer stacking along the c axis. In Extended Data Fig. 1b, the 
top view illustrates the quasi-one-dimensional chains running along 
the b axis within each layer. The lattice in the ab monolayer breaks the 
mirror symmetry along the a axis, distinguishing the A-type layer from 
the B-type layer. The determination of this lattice’s mirror symmetry 
breaking is pivotal for analysing step-edge geometry and understand-
ing the topology in α-Bi4Br4, which we present in Extended Data  
Figs. 4 and 5. Notably, adjacent layers exhibit opposite tilts, confirmed 
by scanning transmission electron microscopy measurements19. To 
investigate the crystal structure of α-Bi4Br4, we conducted single-crystal 
X-ray diffraction using a Bruker SMAER Apex II X-ray diffractometer 
with a Mo Kα source (Extended Data Fig. 1c). The resulting lattice  
parameters are a = 13.0667(12) Å, b = 4.3359(4) Å, c = 20.0676(19) Å and 
β = 107.336(2)o. The lattice parameters obtained from our X-ray diffrac-
tion results quantitatively match prior experimental findings  
(for example, refs. 18,26) and align well with the theoretically predicted 
values reported in ref. 16. We also confirmed the preferred plane to be 
(001) using a Rigaku Smartlab diffractometer with Cu Kα radiation. It 
is worth noting that we conducted mechanical exfoliation specifically 
on this (001) surface to acquire the atomically thin flakes used for our 
transport experiments.

Device fabrication
We employed a polydimethylsiloxane stamp-based mechani-
cal exfoliation technique to fabricate atomically thin (four- or 
six-atomic-layer-thick) α-Bi4Br4 devices. We patterned the sample 
contacts on the silicon substrates with a 280 nm layer of thermal oxide 
using electron beam lithography, followed by chemical development 
and metal deposition (5 nm Cr and 35 nm Au). The fresh α-Bi4Br4 flakes 
were mechanically exfoliated from bulk single crystals on polydi-
methylsiloxane stamps. Before transferring them onto the SiO2/Si 
substrates with prepatterned Cr/Au electrodes, we identified suit-
able samples with good geometry using optical microscopy. Note 
that we identified the thickness of the flakes through optical con-
trast, which is a commonly used method for air-sensitive samples; see, 
for example, ref. 27. As widely known in the field of two-dimensional 
materials, samples with various thicknesses show different optical 
contrast37. Therefore, we characterized the thickness of the samples 
using AFM and established the corresponding relationship between 

optical contrast and thickness beforehand. To preserve the intrinsic 
properties of the compound and minimize environmental effects, we 
encapsulated the samples using thin polymethyl methacrylate films 
with thicknesses around ~50 nm, which ensured that the samples on 
the devices were never exposed to air directly. All sample fabrication 
processes were performed in a glovebox with a gas purification system 
(<1 ppm of O2 and H2O).

We chose to employ small, uniformly thick flakes of four and six 
atomic layers of α-Bi4Br4 to systematically investigate the Aharonov–
Bohm oscillations in samples with specific dimensions, allowing for a 
precise study of the quantum coherent transport behaviour of hinge 
modes. These flakes possess a regular shape, ensuring the straightfor-
ward extraction of the magnetic flux area for a given magnetic field 
direction, and they were chosen to be of a small size to minimize the 
possibility of exceeding the phase coherent diffusion length. Neverthe-
less, we do not anticipate any hindrance to observing Aharonov–Bohm 
oscillations in thicker flakes, provided the perimeter of the sample’s bc 
plane remains within the phase coherent diffusion length regime. We 
believe that future investigations focusing on the thickness depend-
ence of the Aharonov–Bohm effect in α-Bi4Br4 devices will provide 
valuable insights.

Sample characterizations
We captured the optical images using an Olympus BX 53 M micro-
scope. To determine the thickness of the flakes, we employed AFM. 
AFM images were taken with Bruker Dimension Icon3 in tapping mode.

To gain insights into the crystallographic orientations of the exfo-
liated flakes, we conducted structural analysis using electron diffrac-
tion measurements. Notably, the flakes obtained through mechanical 
exfoliation on the (001) surface consistently exhibit a rectangular 
shape with a longer dimension along a specific direction, reminiscent 
of the shape of the bulk single crystal; this is evident in all of the opti-
cal microscopy images of the devices featured in the main text, as well 
as in the scanning electron microscopy image of a relatively thicker 
flake (~100 nm thick) shown in Extended Data Fig. 2a. Note that the 
electron diffraction experiments were performed on this relatively 
thicker flake. Conducting such measurements on very thin flakes 
poses technical challenges, as they tend to fully oxidize during sam-
ple preparation for electron diffraction. In Extended Data Fig. 2b, we 
display the prepared cross-sectional transmission electron microscopy 
thin lamella, which was obtained through focused ion beam cutting  
(using a Helios NanoLab G3 UC dual-beam focused ion beam and scan-
ning electron microscope (FIB/SEM) system) that was required for 
performing the electron diffraction experiments. Sample thinning 
was accomplished by gently polishing the sample using a 2 kV Ga+ ion 
beam in order to minimize surface damage caused by the ion beam.  
The inset of Extended Data Fig. 2b provides the electron diffraction 
patterns (performed on a Titan Cubed Themis 300 double Cs-corrected 
scanning/transmission electron microscope (S/TEM), operated  
at 300 kV) acquired at T = 290 K. Our diffraction analysis confirms that 
the long and short axes of the thin flake align along the b axis [010] 
and a axis [100], respectively, while the surface corresponds to the ab 
plane (001). These observations are consistent with the expectations 
based on the crystal structure of α-Bi4Br4 (refs. 16,18,19,25,26), where 
the long axis is anticipated to align along the atomic chain direction. 
Consequently, in our mechanically exfoliated flakes showcased in the 
main text, we have designated the direction of the long edge as the crys-
tallographic b axis and the orthogonal direction on the (001) surface as 
the a axis. This methodology for determining crystallographic orienta-
tions has been effective for our flakes, which are markedly rectangular.

Furthermore, to ensure that the Raman shift from the exfoliated 
flake matched that of the bulk α-Bi4Br4 crystal, we performed Raman 
spectroscopy on representative flakes of the same optical contrast 
(Extended Data Fig. 3). Raman spectra were collected using a Horiba–
Jobin–Yvon Raman system under 532 nm laser excitation with a power 
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of 0.1 mW. The Si peak at 520.7 cm−1 was used as the reference for the 
calibration in the data analysis.

Electrical transport measurements
Transport measurements were conducted using an Oxford Heliox 
system with a temperature range of 0.3 to 8 T. For measurements under 
higher magnetic fields up to 18 T, a dilution refrigerator with a base 
temperature of 30 mK was utilized at the National High Magnetic 
Field Laboratory in Tallahassee, FL, USA. To ensure precise sample 
alignment with the external magnetic field, the devices were mounted 
on a rotator that allows in situ sample rotation. Multiple devices were 
prepared and measured over multiple measurement runs to ensure 
reproducibility of the results.

Scanning tunnelling microscopy measurements
Scanning tunnelling microscopy measurements were performed on 
freshly cleaved samples. To obtain atomically resolved, pristine sur-
faces, single crystals were mechanically cleaved in situ at 77 K under 
ultrahigh vacuum conditions. The freshly cleaved samples were imme-
diately inserted into the microscope head, already at the 4He base tem-
perature (4.2 K). For each cleaved crystal, surface areas over 5 × 5 μm2 
were explored to find atomically flat surfaces. Topographic images 
were acquired using a Unisoku Ir/Pt tip in the constant current mode. 
Tunnelling conductance spectra were obtained using standard lock-in 
amplifier techniques with a lock-in frequency of 977 Hz. The tunnelling 
junction setup and the modulation voltage for lock-in detection are 
mentioned in the corresponding figure captions.

Scanning tunnelling microscopy evidence of hinge modes in 
four-atomic-layer-thick step edges
In this section, to reinforce the argument that the observed  
Aharonov–Bohm effect in the transport experiment is indeed a result 
of the transport of hinge-state carriers (as illustrated in Fig. 1c), we 
present additional evidence supporting the existence of these states in 
four-atomic-layer-thick step edges of α-Bi4Br4 crystals. To achieve this, 
we employed scanning tunnelling microscopy, which provides a direct, 
atomic-scale visualization of localized states along atomic step edges 
with high spatial and energy resolution38. This technique has been effec-
tively used to identify topological edge states in many quantum mate-
rials19,38–50, including α-Bi4Br4 (ref. 19). After conducting a thorough 
scan of a freshly cleaved α-Bi4Br4 crystal, we find two four-layer-thick 
atomic step edges along the b axis with opposite orientations identified 
by the topographic images in Extended Data Fig. 4a. The two sides of  
the step edge exhibit the A-type surface, which is revealed by mag-
nified topographic images in Extended Data Fig. 4b. The thickness 
of the step edges is equal to four atomic layers, as indicated by the  
height profiles around the two step edges displayed in Extended  
Data Fig. 4c. Examining the tunnelling spectrum (dI/dV) taken away 
from the step edges (purple curves in Extended Data Fig. 4d), we 
observe a large insulating gap of ≃260 meV, defined as the energy dif-
ference between the conduction and valence band edges19. We note 
that the energy gap value may be subject to band bending induced 
by the probe tip51,52, which can lead to an overestimation of the spec-
tral gap size acquired from tunnelling spectroscopy in insulators or 
semiconductors53. It is important to note that in α-Bi4Br4, the Fermi 
level is located within the energy gap19. Nevertheless, it appears that 
the conduction band edge is near the Fermi level, which could lead 
to the generation of thermally activated carriers at temperatures 
above T ≃ 20 K, as suggested by a resistance drop in the temperature- 
dependent resistance measurements displayed in Extended Data  
Fig. 8 (‘Temperature-dependent resistance measurements’).

Most notably, dI/dV taken at the two four-layer step edges, as 
shown in Extended Data Fig. 4d, reveal notably different behaviours. 
The left step edge features a gapless, in-gap state (orange curves), 
whereas the right step-edge spectrum (green curves) shows an energy 

gap (Fermi energy lies within the gap). This inversion-asymmetric 
behaviour is further demonstrated in the spatially resolved dI/dV map 
taken at the Fermi energy (Extended Data Fig. 4e). It is evident from 
Extended Data Fig. 4e that the edge state mainly appears at the left step 
edge, while for the right step edge, dI/dV is substantially suppressed 
compared to that on the left step edge. This asymmetric behaviour 
is reproducible across various samples and tips; see Extended Data  
Fig. 5 for a second set of topographic and spectroscopic data acquired 
using a different sample and tip. It can be elegantly explained through 
the quantum hybridization of the edge modes. Notably, monolayer 
α-Bi4Br4 is a quantum spin Hall insulator featuring Z2 topological edge 
modes16,19. The hybridization of two such Z2 edge modes is destructive 
and opens an energy gap. Because the inversion centre in α-Bi4Br4 is in 
the monolayer and even-numbered layers lack inversion symmetry16, 
the left and right four-layer edges have different geometries (Extended 
Data Fig. 4f). There are two types of AB edges: those with facing angles 
larger than 180°, which lead to weaker hybridization, and those with 
facing angles smaller than 180°, resulting in stronger hybridization16,19. 
This interlayer edge-state hybridization has been identified as a key 
building block of bulk higher-order topological insulators12–15 that 
exhibit helical hinge states16. In our case, as illustrated in Fig. 4f, the 
asymmetric hybridization ensures that the left four-layer edge carries 
hinge states on top and bottom hinges, while the right four-layer edge 
does not carry any hinge state. Consequently, we obtain a hinge-state 
configuration consistent with the one presented in Fig. 1c.

In this context, it is worth noting that as of now, there is no scanning 
tunnelling microscopy evidence available for the hinge mode along the 
c axis. The absence of such experimental data is primarily due to the 
challenges associated with cleaving the crystal along either the (100) or 
(010) plane for tunnelling measurements. Since the preferred cleavage 
plane for α-Bi4Br4 is along (001), as confirmed by X-ray diffraction meas-
urements (‘Crystal structure of α-Bi4Br4’), cleaving the sample in other 
planes poses substantial challenges. However, as expounded upon in 
‘Higher-order band topology of α-Bi4Br4’ and ‘Theoretical calculations 
of four-layer α-Bi4Br4’ through symmetry arguments, the formation 
of a hinge mode along the c axis is crucial for connecting the hinge 
modes along the b-axis direction (as observed in scanning tunnelling 
microscopy experiments) on the top and bottom hinges, enabling the 
transfer of a spectral flow16. Indeed, in a finite-sized sample, such a hinge 
state is expected to emerge from the gapped Dirac surface state at the 
(010) surface. Furthermore, as also elaborated upon in ‘Theoretical 
calculations of four-layer α-Bi4Br4’, the Bohm effect arising from the 
hinge-mode carriers circumnavigating along the bc plane implies the 
existence of gapless hinge modes along the c axis direction as well.

Lastly, it is worth mentioning that while scanning tunnelling 
microscopy visualizes the hinge modes on a scale of tens of nanome-
tres, these modes may extend over much larger lengths, even in the 
presence of defects. In fact, it is expected that there will be defects on 
the hinges of the samples used for the transport measurements. How-
ever, due to the topological nature of the hinge modes, they are resilient 
against one-dimensional Anderson localization for arbitrarily strong 
non-magnetic disorder. While the disorder may reroute the modes, it 
will not break their spectral flow and their inherent one-dimensional 
conductivity. It is important to note that this local protection of the 
hinge modes persists even if the disorder breaks the inversion symme-
try used to characterize the higher-order topology in the bulk (which 
is, in fact, likely to be the case for the geometry of the sample subjected 
to disorder).

Higher-order band topology of α-Bi4Br4

Three-dimensional α-Bi4Br4 displays two distinct types of topological 
boundary states: higher-order hinge states and surface Dirac cones. The 
first type, namely the hinge states due to the higher-order band topol-
ogy, is protected by time-reversal and inversion symmetries. α-Bi4Br4’s 
symmetry indicators, Z2,2,2,4 = {0,0,0,2} (ref. 54), indicate that it is neither 
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a strong topological insulator nor a weak topological insulator. Instead, 
it features a double band inversion in the bulk and a single protected 
helical hinge state on an inversion-symmetric path on the surface of any 
inversion-symmetric crystal. The specific hinges featuring this state 
depend on the surface termination and cannot be predicted from the 
bulk electronic structure and its topological invariants16. Moreover, 
the helical hinge state can be protected by time-reversal symmetry 
alone, indicating its ability to survive under weak inversion symmetry 
breaking and in crystals with inversion-asymmetric terminations16. The 
second type of topological boundary state that the three-dimensional 
α-Bi4Br4 exhibits is surface Dirac cones. It has a non-trivial Z2 topologi-
cal invariant protected by the C2 rotation symmetry around the [010] 
axis, resulting in a single band inversion in each of the two C2 invariant 
subspaces54. This guarantees the existence of two gapless Dirac cones 
on any surface that preserves the C2 rotation symmetry: that is, the 
(010) and (0-10) surfaces. When the C2 rotation symmetry is broken 
at these surfaces, the surface states become gapped16. Therefore, an 
inversion- and C2-symmetric rod-like crystal with two capping surfaces 
normal to the [010] direction would feature both helical hinge states 
along the [010] direction and gapless Dirac cones at the (010) and 
(0-10) surfaces. The two topological invariants are not completely 
independent, as a capping surface that is not gapless would not allow 
for the hinge states to connect in a way that preserves the C2 symmetry, 
given that they need to form a singly connected loop due to the spectral 
flow they carry16. Notably, when the C2 rotation symmetry is broken 
at the capping surfaces, the surface states become gapped, and their 
‘residue’ forms the gapless hinge states connecting the original hinge 
states16. Importantly, the termination of α-Bi4Br4 surfaces has a notable 
effect on their hinge-state profile16. In a sample with uniform cuts along 
the (001), (00-1), (100) and (−100) surfaces, there is always one hinge 
at the top surface and one at the bottom surface that host a helical 
hinge state. Odd-layer systems are inversion-symmetric, and these two 
special hinges are located on the opposite side surfaces16. However, in 
even-layer systems such as the four-layer flakes studied in this work, the 
inversion symmetry is broken, and the two special hinges are located 
on the same side surface16,19, either the (100) or (−100) surface, as illus-
trated in Extended Data Fig. 6a. The even-layer α-Bi4Br4 also features 
gapless Dirac cones at the (010) and (0-10) surfaces protected by the C2 
rotation symmetry around the [010] axis. As discussed earlier, if the C2 
rotation symmetry is broken at the capping surfaces, the surface states 
become gapped, and their residual states form the gapless hinge states 
connecting the original hinge states, as illustrated in Extended Data Fig. 
6b (also in Fig. 1c). We refer to ‘Theoretical calculations of four-layer 
α-Bi4Br4’ for further discussion regarding the formation of hinge states 
along the edges of one of the (100) surfaces of a finite-sized α-Bi4Br4 
flake used in our transport experiments.

Theoretical calculations of four-layer α-Bi4Br4

To analyse the electronic properties of α-Bi4Br4 and determine its 
topological character, we performed first-principles calculations 
using the VASP code55,56. To obtain more precise information on band 
gaps and inversions, we utilized the Heyd–Scuseria–Ernzerhof hybrid 
functional method57. We also employed the Wannier90 code58 to con-
struct maximally localized Wannier functions for the p orbitals of both 
Bi and Br. These Wannier functions were then utilized to construct 
an ab initio tight-binding model16 for the material. This enabled us to 
analyse the electronic band structure and better understand the topo-
logical boundary states of α-Bi4Br4. As discussed in ‘Higher-order band 
topology of α-Bi4Br4’, α-Bi4Br4, as a higher-order topological insulator, 
exhibits a hinge-state profile that is dependent on the termination of 
its surfaces16. The inversion asymmetry leads to the two helical hinge 
states being located at the two hinges of the same side surface, either 
the (100) or (−100) surface, as demonstrated by our calculations pre-
sented in Extended Data Fig. 7a,b. The gapped (100) and (−100) side 
surface states are represented by orange bands, while the two purple 

bands indicate the localization of the two helical hinge states at the 
two hinges of the (100) side surface. These calculations confirm the 
presence of well-defined hinge states within the bulk and surface gaps 
in four-layer α-Bi4Br4.

Upon comparing our theoretical calculations with tunnelling spec-
troscopy measurements (Extended Data Figs. 4 and 5), we observe a 
subtle difference: the tunnelling spectroscopy data show a gapless state 
on the left edge, whereas our theoretical calculations for a four-layer 
system (as depicted in Extended Data Fig. 7) indicate hybridization of 
the left-bottom and left-top states, leading to a small gap of ~4 meV. 
Such hybridization is expected in a higher-order topological insulator. 
In this context, it is important to note that the complete gaplessness 
of the hinge modes is theoretically anticipated only when the hinges 
are separated by a thermodynamically large distance. Therefore, in a 
nanoribbon structure with only four atomic layers (which falls short of 
meeting this criteria), it is theoretically anticipated that the hinge states 
would exhibit a finite gap. The size of this gap decreases exponentially 
as the number of layers increases59. Consequently, the gapless nature 
of the hinge modes in a four-atomic-layer scenario is not guaranteed by 
the bulk topology. However, depending on material parameters, such 
as the surface correlation length, the hinge mode may remain gapless 
down to very few layer heights. For example, as demonstrated in bis-
muth (refs. 15,40), a pure higher-order topological material, the edge 
state has been observed on steps with the height of a bismuth bilayer 
without exhibiting a gap15,40. Nevertheless, it is important to emphasize 
that in transport experiments, this gap (if present) will generally impact 
the transport properties only if it develops precisely at, or very close 
to, the Fermi energy. Therefore, in our transport sample, even if a gap 
were to develop, if it occurs at an energy level distant from the Fermi 
energy, it is unlikely to affect the observed Bohm effect.

Finally, it is worth noting that our theoretical calculations primar-
ily emphasize the hinge modes along the b axis and do not explicitly 
address the hinge modes forming along the c axis to create a singly 
connected loop on the (100) surface, a configuration necessary for 
carrying spectral flow (as depicted in Fig. 1c). To elucidate the formation 
of such a hinge-mode loop, we present the following symmetry-based 
arguments. As elaborated in ‘Higher-order band topology of Bi4Br4’, in 
an ideal three-dimensional α-Bi4Br4 crystal possessing a non-trivial Z2 
topological invariant protected by the C2 rotation symmetry around the 
[010] axis, there should be two topologically gapless Dirac cones on any 
surface preserving this C2 rotation symmetry, namely the ‘perfect’ (010) 
and (0-10) surfaces16. However, it is crucial to acknowledge that when 
the C2 rotation symmetry is broken at these surfaces, the surface states 
become gapped. Most likely this occurs in our finite-sized α-Bi4Br4 
flakes used for transport measurements due to their finite length 
along the b axis. Furthermore, as a crystal termination perpendicular 
to the atomic chains along the b axis in a finite-sized sample, the (010) 
surface is not a natural cleavage plane, and the C2 rotation symmetry 
is not expected to be preserved. Therefore, strictly speaking, the (010) 
surface is always expected to exhibit a gap, although in cases where the 
C2 rotation symmetry is ‘on average’ preserved, the gap on the (010) 
surface may be very small in the limit of large (010) surface area. Nev-
ertheless, in the four-layer (or six-layer) system, (1) the C2 rotation sym-
metry is clearly broken (due to the even number of layers)16 and (2) the 
number of stacked layers is small, implying that the (010) surface gap is 
expected to be clearly opened. Now, if a capping surface is not gapless, 
there is no way to connect the top and bottom hinge states along the b 
axis while preserving the C2 symmetry, a requirement since the hinge 
states must form a singly connected loop to carry the spectral flow16.

In our finite-sized samples, both the (001) and (100) surfaces lack 
gapless surface states. Additionally, the Dirac surface state at the (010) 
surface gaps out due to the breaking of C2 rotation symmetry (as dis-
cussed above). Hence, the most plausible scenario for forming a singly 
connected hinge-mode loop is that the ‘residue’ of the gapped Dirac 
surface state on the (010) surface brings about conducting channels 
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localized on the c axis hinges. Consequently, the gapless hinge states 
along the c axis are expected to form and connect the original hinge 
states (as discussed in ref. 16). This results in a singly connected loop on 
the (100) surface that effectively carries the spectral flow, as illustrated 
in Extended Data Fig. 6b (and Fig. 1c).

Given these considerations, capturing the c axis hinge modes in 
theoretical calculations requires modelling ‘imperfect’, non-cleavable 
(010) and (0-10) surfaces. Such a calculation is exceedingly complex, 
and we anticipate that its outcomes may not yield further insights 
beyond the symmetry-based arguments presented here, as they sen-
sitively depend on the exact termination chosen for the modelling.

Having provided a rationale for the existence of c-axis hinge modes 
in our α-Bi4Br4 flakes, we emphasize that, experimentally, the mani-
festation of the Bohm effect requires electrons to traverse the sample 
in a closed loop to induce interference. Therefore, our experimental 
observation of the Bohm effect inherently supports the presence of 
such a closed loop. Furthermore, our angular-dependent Bohm effect 
measurements provide compelling evidence indicating that this closed 
loop resides on the bc plane, with the extracted area over which the 
carriers maintain phase coherence closely resembling the flux area of 
the bc plane. Hence, to account for the hinge modes forming a closed 
loop on the bc plane, the most plausible scenario entails these hinge 
states forming along the boundaries of the bc plane, specifically along 
the b and c axes of the α-Bi4Br4 flakes.

Magnetic field effect on the hinge state
In this section, we explore the influence of a magnetic field on the hinge 
state. The impact of the magnetic field can be elucidated as follows: 
the intrinsic gapless nature of the helical edge state—that is, the Kram-
ers degeneracy at the Dirac point—is protected by the time-reversal 
symmetry. When this symmetry is broken via the application of a mag-
netic field, a Zeeman energy gap may emerge at the Dirac point. Let us 
consider a simplified model Hamiltonian for the helical edge state: 
H0 = vℏkyσy , where σi (i = x, y, z)  represent the Pauli matrices, v is the 
Dirac velocity and ħ denotes the Planck constant. The corresponding 
dispersions are E± = ±vℏky, and the two bands linearly cross at the Dirac 
point at ky = 0. When the magnetic field is applied along the z axis, the 
resulting Zeeman term can be modelled as H⟂ = αzBzσz , where 
αi (i = x, y, z) are coefficients related to the Landé g-factor. In this case, 
the dispersions become E± = ±(v2ℏ2k2y + α2zB2z )

1/2: that is, the Dirac point 
(at ky = 0) becomes gapped. We can provide a rough estimate for the 
gap size based on field-dependent spectra collected at a monolayer 
step edge, as reported in ref. 19, which shows a Zeeman-gap-opening 
rate on the order of a meV T−1. In our transport experiments, we 
observed the Bohm effect up to a magnetic field of 18 T. Assuming that 
the Zeeman-gap-opening rate observed for a monolayer step edge in 
ref. 19 also applies to the four- (or six-)-layer-thick α-Bi4Br4 flakes used 
in our experiments, a field of 18 T would induce a Δ ~50 meV Zeeman 
gap (over a 260 meV bulk band gap) at the Dirac point at ky = 0. While 
the exact energy location of the original Dirac points in the α-Bi4Br4 
flakes employed for our transport measurements remains unknown 
and may not necessarily align with the theoretically calculated coun-
terpart, it is conceivable that the Dirac point is situated beyond Δ/2: 
that is, 25 meV away from the Fermi energy (over the energy scale of 
260 meV), and it may not even lie within the bulk or surface gap. Given 
that the transport properties are primarily governed by carriers on the 
Fermi energy, in such a scenario it is plausible that this magnetic 
field-induced gap would exert minimal influence on the transport 
properties or the Bohm effect up to a magnetic field of 18 T.

An overview of the Aharonov-Bohm effect in mesoscopic 
electron transport
In this section, we contextualize our findings by first reviewing rel-
evant prior works and then discuss our observations based on this 
background.

Experimental investigations into the Aharonov–Bohm effect 
in mesoscopic electron transport gained prominence in the 1980s. 
Sharvin and Sharvin conducted pioneering experiments involving a 
slender magnesium cylinder deposited around a micron-thin quartz 
filament60. When a magnetic field was applied along the cylinder’s 
axis, they observed periodic oscillations in the magnetoconductance 
with only h/2e (normalized by the cross-sectional area of the cylinder) 
periodicity, whereas the h/e periodicity was absent. A similar oscillation 
pattern was later observed in carbon nanotubes33. This phenomenon 
may be attributed to the persistent destructive interference between 
time-reversed pairs of paths, which inhibits the fundamental h/e period 
even at higher magnetic fields. This effect, which is akin to weak antilo-
calization, was analysed theoretically by Altshuler, Aronov and Spivak: 
if many such pairs contribute to transport with uncorrelated zero-field 
phases, the h/e oscillations average out32,61. However, the h/2e periodic-
ity contains a substantial contribution of time-reversed paths that have 
the same relative phase, making them more robust against averaging. 
Subsequent studies on various materials, including metals34,35,62,63, 
semiconductors64–66 and semimetals (such as graphene36), conducted 
using ring-shaped planar geometries (where the diameter of the ring 
does not exceed the phase coherent diffusion length, ensuring that 
the entire sample retains quantum mechanical coherence), observed 
the h/e periodicity.

The field of topological materials witnessed its first observation 
of the Aharonov–Bohm effect in 2009, when Peng et al.4 observed 
it in a strong topological insulator nanoribbon. These nanoribbons 
can be envisaged as hollow metallic cylinders with surface transport 
channels. Consequently, the quantum interference of surface carriers 
following various paths within this hollow structure can lead to oscil-
latory conductance patterns in response to magnetic flux61,67. Peng 
et al.4 observed fundamental h/e periods along with a much weaker 
h/2e period. It was argued that the lower degeneracy of the topologi-
cal surface states removes the self-averaging effect, thus bringing 
about the fundamental h/e period61. Furthermore, the absence of 
h/2e periodicity at low fields in this topological insulator nanorib-
bon was attributed to the absence of weak antilocalization behaviour 
for integer multiples of the h/2e flux4. Note that the h/2e oscillation 
was present at higher magnetic fields4. Subsequent studies on the  
Aharonov–Bohm oscillations in three-dimensional topological insula-
tors and topological semimetals, involving nanoribbons, nanowires, 
or ring-shaped geometries, reported similar oscillation periodicities, 
indicating surface transport5–10.

Interestingly, in another topological material, 1T′-MoTe2, only 
h/2e periodicity is observed17. 1T′-MoTe2 has the same higher-order 
topological band index as α-Bi4Br4, but it is metallic in the bulk and on 
the surface and hence not a bulk higher-order topological insulator. 
The observed periodicity may be due to this (predominantly surface) 
metallicity and the associated strong chemical potential fluctuations 
induced by disorder67,68. These states are non-topological, and there-
fore, one expects them to exhibit the same self-averaging behaviour 
as non-topological cylinders. In contrast, in our study on α-Bi4Br4, we 
observe both h/e periodic Aharonov–Bohm and h/2e periodic Alt-
shuler–Aronov–Spivak oscillations, with the primary h/e periodicity 
dominating over the h/2e periodicity. This observation indicates the 
absence, or at least the suppression, of self-averaging, as would be 
expected from the topological nature of the associated hinge modes, 
as well as the presence of weak antilocalization.

Temperature-dependent resistance measurements
In this section, we present the temperature-dependent resistance data 
obtained from Sample 1. These data, shown in Extended Data Fig. 8, 
suggest the presence of hinge states in α-Bi4Br4. Specifically, we observe 
that for temperatures exceeding T ≅ 20 K, an Arrhenius plot of the 

normalized resistivity, Rxx
Rxx(T=300K)

, reveals a clear gap, as indicated by the 
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linear behaviour shown in the inset of Extended Data Fig. 8. 
This activated behaviour is suppressed once T is lowered below 20 K, 
leading in the Arrhenius plot to a nearly constant dependence for 

Rxx
Rxx(T=300K)

 as a function of 1/T. This observation indicates that the 

gapless hinge states effectively short circuit the bulk gap by providing 
additional channels for carrier conduction.

Data availability
All data needed to evaluate the conclusions in the paper are present 
in the paper. Additional data are available from the corresponding 
authors upon reasonable request. Source data are provided with  
this paper.
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Extended Data Fig. 1 | Crystal structure and experimental X-ray diffraction 
data of α-Bi4Br4. a, Side view of the crystallographic structure of α-Bi4Br4, 
showing the interlayer AB stacking. b, Top view of the A-type and B-type 
monolayers. c, X-ray diffraction data obtained from a single crystal of α-Bi4Br4, 
featuring the (00 l) preferred peaks. The refined lattice parameters are: 

a=13.0667(12) Å, b=4.3359(4) Å, c=20.0676(19) Å, and β=107.336(2)°. The inset 
displays an optical microscopy image of a typical α-Bi4Br4 bulk single crystal, 
placed on millimeter grid paper, with the top surface corresponding to the (001) 
plane. This surface was used for the mechanical exfoliation process to fabricate 
the devices utilized in our transport measurements.
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Extended Data Fig. 2 | Electron diffraction analysis of a mechanically 
exfoliated α-Bi4Br4. flake.a, Scanning electron microscopy image of rectangular-
shaped α-Bi4Br4 thin flakes on a Si substrate. The crystallographic plane and the 
axes are indicated for the largest flake used for the diffraction analysis.  

b, Transmission electron microscopy image displaying the cross-section 
of the thin flake, which is perpendicular to the long axis of the flake. Inset: 
corresponding electron diffraction pattern from the [010] zone axis.
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Extended Data Fig. 3 | Raman spectroscopy of exfoliated and bulk α-Bi4Br4. 
a, Raman spectrum obtained from a mechanically exfoliated α-Bi4Br4 flake 
consisting of four atomic layers. The inset shows an optical microscopy image of 
the corresponding α-Bi4Br4 flake on a SiO2/Si substrate, with the flake boundary 
outlined by a white dashed rectangle. b, Raman spectrum of bulk α-Bi4Br4, 

accompanied by the corresponding optical microscopy image in the inset. 
The Raman shift acquired from the four-layer flake matches the bulk Raman 
shift, indicating the preservation of the crystalline properties throughout 
the exfoliation process. The error bar associated with peak identification is 
approximately 1 cm−1.
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Extended Data Fig. 4 | Scanning tunneling microscopy evidence for a hinge 
state in a four-layer step edge. a, Topographic images of two four-layer atomic 
step edges of opposite geometric orientations. b, Magnified images of the two 
sides of the four-layer atomic step edges, revealing A type surfaces on both sides. 
The corresponding regions are marked as 1 and 2 in the large-scale topographic 
image in panel a. c, Height profiles of the topographic images in panel a, taken 
perpendicular to the b axis. The corresponding locations are marked on the 
topographic images in panel a with color-coded lines; the scan directions are 
indicated with arrows. d, dI/dV spectra shown in color-coding, obtained at the left 
step edge, right step edge, and regions away from the edge. The positions where 
these spectra were acquired are marked with matching color-coded dots on the 
topographic images in panel a. The left step edge exhibits a pronounced in-gap 
state, while the right step edge shows notable suppression of the density of states 
at the bulk gap. e, Differential conductance maps of the two four-layer atomic 

step edges shown in panel a, taken at the Fermi energy (V = 0 mV). A pronounced 
edge state is observed on the left edge whereas on the right edge, no edge state is 
visible. Tunnelling junction set-up for spectroscopy: V = −600 mV, I = 0.5 nA, and a 
root mean square oscillation voltage of 1 mV. Tunnelling junction set-up for dI/dV 
maps: V = −600 mV, I = 0.3 nA, and a root mean square oscillation voltage of 10 mV. 
All data were obtained at T ≃ 4.2 K. f, Schematic of a four-layer edge showing 
quantum hybridization of the quantum spin Hall edge states for neighboring 
layers. The edges of A and B layers with a facing angle smaller than 180° exhibit a 
stronger hybridization of the monolayer edge states (depicted as purple spheres). 
The hybridization of quantum spin Hall edge state is destructive, as illustrated by 
the lighter color of the edge states (purple spheres). As a result, the left four-layer 
configuration hosts hinge states on the top and bottom hinges, while the right 
configuration lacks hinge states.
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Extended Data Fig. 5 | Reproducibility of the scanning tunneling microscopy 
data– evidence for a hinge state in a four-layer step edge, acquired using a 
different sample and tip. a, Topographic images of two four-layer atomic step 
edges with opposite geometric orientations. The terraces on both sides of the 
step edges exhibit an A-type surface. b, Height profiles of the topographic images 
in panel a, taken perpendicularly to the b axis. The corresponding locations 
are marked on the topographic images in panel a with color-coded lines, and 
the directions of the scans are indicated by arrows. c, Differential conductance 
maps of the two four-layer atomic step edges shown in panel a, taken at the Fermi 
energy (V = 0 mV). A pronounced edge state is observed on the left edge, while no 
edge state is visible on the right edge. d, dI/dV spectra taken at the left step edge 

(orange), right step edge (green), and away from the edge (purple), revealing 
striking differences between the two step edges. Orange and green dots in panel 
a denote the respective positions, on the left and right step edges, where the 
differential spectra were collected. The left step edge exhibits a pronounced 
in-gap state, whereas on the right edge, the density of states at the bulk gap is 
notably suppressed. Tunnelling junction set-up for dI/dV maps: V = −600 mV, 
I = 0.3 nA, and a root mean square oscillation voltage of 10 mV. Tunnelling 
junction set-up for spectroscopy: V = −600 mV, I = 0.5 nA, and a root mean square 
oscillation voltage of 1 mV. All data were obtained at T≃4.2 K and are consistent 
with Extended Data Fig. 4 results.
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Extended Data Fig. 6 | Topological boundary states in a α-Bi4Br4 nanorod with 
an even number of layers where the inversion symmetry is broken. a, Nanorod 
of α-Bi4Br4 featuring helical hinge states resulting from higher-order band 
topology and two surface Dirac cones on the (010) surface protected by the C2 

rotation symmetry around the [010] axis. It is worth noting that the helical hinge 
states do not require the inversion symmetry and are robust against inversion 
symmetry breaking16. b, Propagation paths of the helical hinge states when the C2 
symmetry is broken on the (010) surface.
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Extended Data Fig. 7 | Calculated hinge states for a four-layer α-Bi4Br4. a, The 
edge-projected band structure for a (001) four-layer ribbon on the top surface 
of α-Bi4Br4. Purple bands represent gapless hinge states, cyan bands are from the 
bulk and (001) surfaces, and orange bands are from the (100) and (−100) side 
surfaces of the ribbon. Due to the inversion asymmetry inherent in even-layer 
systems, the bands are singly degenerate at each kb. The ribbon is infinitely long in 
the b-direction and 50-chain wide in the a-direction. For a four-layer system, the 
left bottom and the left top states (depicted in panel b) undergo hybridization, 
resulting in a small gap of 4.1396 meV. Note that the energy gap may be slightly 

overestimated in this calculation due to its derivation from three-dimensional 
bulk band structure calculations. In reality, our tunneling spectroscopy 
measurements (see Fig. 4) reveal the presence of a gapless state on the left 
edge. Additionally, there exists a quantitative disparity in the positioning of the 
Fermi energy when comparing the calculation with the tunneling spectroscopy 
measurements. Nevertheless, the calculation provides a qualitative depiction 
of well-defined hinge states within the energy gaps of both the bulk and surface 
states. b, Schematic representations in real space illustrating the bulk, surface, 
and hinge states of a four-layer α-Bi4Br4.
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Extended Data Fig. 8 | Temperature dependence of sample resistance and Arrhenius plot of α-Bi4Br4 Sample 1. Sample resistance, Rxx as a function of temperature, 
T (in Kelvin), exhibiting a sharp rise below T ≃ 20 K. Inset: The electrical resistivity ρ, normalized to the 300K-value ρT=300K, (left axis, black) and its logarithmic 
derivative (right axis, red) as a function 1/T.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Determination of the phase coherent diffusion length 
from temperature dependent Bohm oscillation data. a, Temperature 
dependence of the Fourier transform amplitude of the h/e oscillations. Fitting 
the data to AT−0.5 exp (P/Lϕ(T)) where Lϕ (T) = BT−0.5, A and B are the fitting 
parameters, P is the perimeter of the loop along the bc plane, yields A=0.43 and 
P
B
= 0.04± 0.02. The resulting fitting function is represented by the orange 

curve. b, Temperature dependence of the Fourier transform amplitude of the 
h/2e oscillations. Fitting the data to the same function yields A=0.2 and 
P
B
= 0.14± 0.06. The resulting fitting function is represented by the orange 

curve. c, d, Temperature dependence of the Fourier transform amplitude of the 
h/e and h/2e oscillations, respectively, now fitted considering Lϕ (T) = BT−1.  
The fitting yields A=0.44, P

B
= 0.004± 0.01 for h/e oscillations and A=0.18, 

P
B
= 0.08± 0.04 for h/2e oscillations. The resulting fitting functions are 

represented by the orange curves. These fits provide LABϕ = (100± 50)T−
1
2 μm 

(or LABϕ = (1000± 2500)T−1μm) for the Bohm oscillations, and 

LAASϕ = (60± 26)T−
1
2 μm (or LAASϕ = (100± 50)T−1μm) for the Altshuler–

Aronov–Spivak oscillations.
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